How to Rebase and Sync Your Fork with
Upstream in Git

Introduction

When contributing to open source projects like Mautic, it's standard to have a personal fork of the repo.

Other people do merge in their pull requests (PRs) over time, however, so your fork falls behind the
main repository (or "upstream").

This article explains how to:
e Keep your fork current,

¢ Rebase your feature branches, and
¢ Fix synchronization issues before opening a PR.

Whether you are a newcomer to Git or have been working with it for many years, this guide will keep
you on the best practices of open-source collaboration.

What is “Upstream” and why it matters

When you fork Mautic’s repository, you're essentially making your own copy of it under your GitHub
account.

Term Meaning
Upstream The original Mautic
repository https://github.com/mautic/mautic
Origin Your personal fork of that repo
(e.g. https://github.com/YOUR-GITHUB-
USERNAME/mautic)
Local The copy on your computer that you work on.

Keeping your local and origin branches up to date with upstream ensures that your PRs merge
smoothly without conflicts

Before You Begin

Make sure you have:

e Git installed


https://kb.mautic.org/category/how-to-guides/for-developers/6/
https://kb.mautic.org/category/how-to-guides/4/
https://github.com/mautic/mautic
https://github.com/mautic/mautic.git
https://github.com/mautic/mautic
https://github.com/yourusername/mautic
https://github.com/yourusername/mautic
https://git-scm.com/downloads

¢ A cloned fork of Mautic on your local machine

e A terminal or Git Bash ready

Verify your remotes:

git remote -v
Expected output (before setting upstream):

origin https://github.com/yourusername/mautic.git (fetch)
origin https://github.com/yourusername/mautic.git (push)

Setting up your upstream remote
To connect your fork to Mautic’s main repo, add an upstream remote:

git remote add upstream https://github.com/mautic/mautic.git
Confirm it's added correctly:

git remote -v
You should now see:

origin https://github.com/yourusername/mautic.git (fetch)
origin https://github.com/yourusername/mautic.git (push)

upstream https://github.com/mautic/mautic.git (fetch)
upstream https://github.com/mautic/mautic.git (push)

Steps syncing your fork with Upstream

When the upstream repository changes, you'll want to update your local default branch and then push
it to your fork.

Step 1: Fetch all branches from upstream

git fetch upstream

Step 2: Switch to your local default branch

git checkout origin/7.x

Step 3: Merge upstream changes

git merge upstream/x.x

or (recommended):



git rebase upstream/7.x

Step 4: Push changes to your fork

git push origin 7.x
Now your fork’s 7.x branch is up to date with Mautic’s.

Rebasing your pull request (PR)

When working on a feature branch, such as feature/improve-login, it's important to rebase it on top of
the latest state of the default branch.

The default branch is the branch in a repository where new changes are merged.

In many open-source projects, it's called main, but in Mautic it may have a versioned name such as
7.x or 5.2, depending on the development cycle.

Screenshot: The default branch indicator 7.x on Mautic’s GitHub repository.

Now that you know how to identify the default branch, let's go through the steps to rebase your work
properly.

This ensures your feature branch contains the most recent updates from Mautic before you push your
changes or open a pull request.

Step 1: Fetch upstream updates

git fetch upstream
Step 2: Switch to your feature branch

git checkout feature/improve-login
Step 3: Rebase onto upstream/main

git rebase upstream/7.x
During rebasing, Git will pause if there are conflicts. Resolve them and continue with:

git add .
git rebase --continue
If you want to abort the process:

git rebase --abort
Step 4: Push the rebased branch to your fork

Since history changed, use the --force flag carefully:

git push origin feature/improve-login --force



Resetting your repo to match upstream

If your local repo gets messy or too far behind, you can completely reset it to match the upstream
repository.

Warning: This will overwrite local changes.
git fetch upstream

git checkout 7.x

git reset --hard upstream/7.x

git push origin 7.x --force

This command sequence aligns your local and remote main branches exactly with upstream no extra
commits, no drift.

Dealing with Merge Conflicts

Sometimes when rebasing or merging, Git may report a conflict, this means that the same part of a file
was changed both in your branch and in the upstream branch. Git can’t automatically decide which
version to keep, so it asks you to make that decision manually.

Example output:

Auto-merging src/User/Login.php

CONFLICT (content): Merge conflict in src/User/Login.php
How to Resolve

1. Open the conflicting file listed in the message.

11. Look for conflict markers like these:

<<<<<<< HEAD

Your version of the code

The version from upstream (or the default branch)

>>>>>>> ypstream/<default-branch>

iii. Compare both sections carefully.



¢ The part between <<<<<<< HEAD and ======= is your local change.
* The part between ======= and >>>>>>> upstream/<default-branch> is the change from
upstream.

iv. Decide which version to keep, or combine both if that makes the most sense.
e Keep your version if it still applies correctly to the new upstream code.

e Keep the upstream version if it contains improvements, bug fixes, or refactors that your
branch should now follow.

e Sometimes, you may need to manually merge both versions into one clean and consistent
block of code.

v. Remove the conflict markers (<<<<<<<, =======, >>>>>>>) after editing.
vi. Stage the resolved file and continue the rebase:
git add src/User/Login.php
git rebase --continue
Note: When you resolve merge conflicts, it's a good practice to note what you changed in your pull
request description or comments.
This helps reviewers understand what you decided and why.
For example, you might include something like this in your PR comment:

Merge conflict resolution notes:

e Resolved conflict in src/User/Login.php line 120-140.

e Kept upstream changes for improved logging.

e Reapplied my fix for user token validation after the refactor.

This level of transparency allows reviewers to check the affected lines more easily and confirm that the
resolution aligns with project standards.

Common Mistakes and Fixes

Problem Cause Solution



fatal: No upstream configured
force push rejected
Conflicts during rebase

Rebase fails completely

Need help?

You haven't added the upstream Run git remote add upstream http

remote s://github.com/mautic/mautic.git
Branch is protected or you lack Check PR branch permissions
permission

Code differences between Resolve conflicts and continue
upstream and your branch

Rebase was aborted Try again or reset with git reset

--hard upstream/main

If you get stuck while rebasing or syncing your fork, reach out to the Mautic Product Team on Slack:

Channel: #t-product

You'll find friendly maintainers who can help guide you through Git issues.

Conclusion

Rebasing and syncing might appear intimidating at first but is in fact one of the most useful Git skills
when contributing to open source projects such as Mautic. Having your fork synced to upstream
simplifies the lives of maintainers and makes your contributions merge-ready at all times.

Online URL.:

https://kb.mautic.org/article/how-to-rebase-and-sync-your-fork-with-upstream-

in-git.html


https://mautic.org/slack/
https://kb.mautic.org/article/how-to-rebase-and-sync-your-fork-with-upstream-in-git.html
https://kb.mautic.org/article/how-to-rebase-and-sync-your-fork-with-upstream-in-git.html
http://www.tcpdf.org

