
 Understanding Migrations and Schema Update
with Doctrine in Mautic
20 Oct 5, 2022 For Developers, Tutorials 0 12313

If you have ever had to troubleshoot a failed Mautic upgrade, you might have
come across this page, which, among other things, describes the
commands doctrine:migrations:migrate and doctrine:schema:update.

If you have ever wondered what those two commands actually do, this is a
short explanation. Hopefully, you will never have to use either of them, as the
automated Mautic upgrade script takes care of everything, but on the off-
chance that something goes wrong it can’t hurt to know a bit about them.

Neither of the two commands are directly related to Mautic - rather, they are
related to the PHP framework that Mautic is built on, Symfony.

The doctrine:migrations commands are handled by
the DoctrineMigrationsBundle and are essentially a safer way of updating the
database compared to the doctrine:schema:update. As for
what doctrine:schema:update is, we need to go back a bit and look at how
Mautic (powered by Symfony) handles the MySQL database:

Object Relational Mapping and Schema updates

Mautic is using ORM (Object Relational Mapping) as a way for the PHP code
to relate to the MySQL database structure - as described here this is offered
by the Symfony DoctrineBundle which integrates with a PHP tool called
Doctrine.

Mapping information is essentially nothing but "metadata”. It is a collection of
rules that informs Doctrine ORM exactly how specific PHP classes and their
properties are mapped to a specific database table in MySQL. The Mautic
source code contains mapping information defining how the database

https://kb.mautic.org/category/tutorials/for-developers/5/
https://kb.mautic.org/category/tutorials/2/
https://docs.mautic.org/en/troubleshooting/update-failed
https://symfony.com/doc/master/bundles/DoctrineMigrationsBundle/index.html
https://www.tutorialspoint.com/symfony/symfony_doctrine_orm.htm

structure is supposed to look for this version of Mautic (i.e. “Mautic 3.1
should have these tables with these features and these columns”). However,
since Mautic is always being developed and improved, sometimes an upgrade
to a newer version of Mautic needs to change things in the database. Since this
is where all our data is stored, this should be handled with extreme care (we
don’t want an update to accidentally corrupt the database!).

(* Mautic uses Semantic Versioning, meaning that database changes that might
break backwards compatibility are only introduced in major new versions -
Mautic 3.0, Mautic 4.0, Mautic 5.0 etc., while database changes that add
something new may also be introduced in minor new versions - Mautic 3.1,
Mautic 3.2, etc.)

Now, the common way to handle database changes is that, for example, the
Mautic mapping information dictates 'The table called X should have a
column called Y and then, when the PHP command doctrine:schema:update is
run, Doctrine ORM notices that the MySQL table X is missing the required
column Y and thus, it creates it in the database. If you
run doctrine:schema:update --dump-sql you can see what SQL queries the
Doctrine ORM believes need to be run in order to bring the actual MySQL
database to match the mapping information provided by Mautic
(the --dump-sql flag means “Do not actually do anything - just output what you
would do”).

The DoctrineMigrationsBundle

So far so good. However, when the Mautic developers add or change
functionality that they know requires changes to the database, they don’t just
want to rely on the ORM being able to figure out what needs to change on the
fly - your MySQL software or server might be slightly different than mine,
and all of a sudden the ORM might behave differently on your Mautic than on
mine, and support becomes much harder. Instead, developers can package the
required SQL queries for a new change into a migration, letting everyone with
access to the source code have an easy way of knowing what was altered, and

https://semver.org/

making sure that the same change is applied consistently to everyone’s
database when upgrading.

This is where the Symfony DoctrineMigrationsBundle comes in. Instead of
having the ORM just generating and firing off SQL queries blindly, the
MigrationsBundle reads migrations from migration files - these are PHP files
that usually contain functions like up() and down(), the former of which
contains the SQL queries to be run when the migration is applied and the latter
of which contains the ‘reverse’ SQL queries to be run if the migration is ever
reversed - thus enabling an easier way to get out of situations where an SQL
query crashed something unexpectedly. The migration files can also contain
functions like preUp() and postUp() describing things to do immediately
before or after applying the queries in the up() function.

(* It is worth noting that most, if not all, Mautic-related migrations do not
provide a down(). The reason for this is that since the migrations are applied
alongside actual code upgrades of Mautic itself during upgrade, if you ever
upgraded Mautic (+ applied the related migrations), but then later reverted some
of the migrations, the Mautic code would get thoroughly confused.)

Each migration is stored in its own file in the folder app/migrations. If you are
running Mautic 2.x, first of all: please upgrade :), and secondly: you will most
likely have 134 migration files in that folder, dating from the period
2015-2018. When Mautic 3 was introduced, the team got rid of a lot of the old
migration files (since we know they would already have been applied during
the upgrade process if people upgraded from 2.16.3 - and if people started
with a new server from scratch with Mautic 3, hey, there would be nothing to
migrate anyway). So in the Mautic 3.x codebase there are currently way fewer
migration files available.

Whenever you run doctrine:migrations:status, the code reads the files
in app/migrations and counts them as Available Migrations. Alongside this, it
will read the table migrations in the MySQL database, which shows what
migrations you have already applied (either through ordinary Mautic upgrade

https://github.com/mautic/mautic/tree/staging/app/migrations
https://github.com/mautic/mautic/tree/staging/app/migrations

or, in rare cases of troubleshooting, manually
with doctrine:migrations:migrate). Any migration files that do not show up in
the migrations table are labeled as New Migration and will be applied if you
ever run doctrine:migrations:migrate

(* Note that the migration files themselves also contain checks to see if they have
already been applied, so even if you run some old migrations the first time after,
say, a fresh install, you might often see Schema includes this migration letting
you know that the migration wasn’t needed. It still counts as executed).

That accounts for three of the numbers output by doctrine:migrations:status -
Executed Migrations, Available Migrations and New Migrations. The command
also outputs a fourth number: Executed Unavailable Migrations (with a scary
red color). What’s that? Simply put, it is the reverse logic of New Migrations:

New Migrations include all migrations that have a migration file
in app/migrations, but no corresponding row in the
table migrations in the MySQL DB.
Executed Unavailable Migrations include all migrations that have a
row in migration in the MySQL DB but no corresponding migration
file in app/migrations.

Despite the red color, it is rarely something to be concerned about. It is just
the MigrationsBundle saying “Apparently we have applied a migration called
Versionxxxxxx, but I have no idea what that migration was because I cannot
find the corresponding migration file”. It is fixed by making sure the number
of rows in the migrations table and the number of files in _app/migration_s
line up (and are named the same, obviously).

Forcibly restoring the Schema (as a last resort)

Keep in mind that except when DoctrineMigrationsBundle applies migrations,
it actually has no idea what the database itself actually looks like. Thus, it is
STRONGLY discouraged to manually alter stuff in the MySQL database on

your own as you might end up in trouble down the road. As the Update Failed
troubleshooting page describes, if your update ever fails and you are in trouble
(and have taken a backup already) in descending order of importance you
could try to:

1. Try the update script again - and let Mautic handle everything
2. Apply any outstanding migrations with doctrine:migrations:migrate
3. Let the ORM update the Schema with doctrine:schema:update

--force

If you ever managed to make some bad, custom changes to the database and
just want to have it return to the ‘vanilla’ Mautic structure, you can try
running doctrine:schema:update --force --complete, which tells the Doctrine
ORM to throw out anything in the database which doesn’t match the mapping
information provided by Mautic. This will cause any custom fields, tables,
indexes etc. that you added directly in the database (as opposed to in the
Mautic interface) to be dropped, as well as altering everything else to match
the mapping information provided, while preserving your data. Keep in mind
that this will (ironically) cause the migrations table to be dropped (as it is not
part of the Mautic mapping information), and thus, the next time you
run doctrine:migrations:status, all migration files in app/migrations will be
considered New Migrations - even if applying them won’t actually do anything.

Thus, running doctrine:schema:update --force --complete followed
by doctrine:migrations:migrate should theoretically bring you back to a vanilla
Mautic database schema with your data intact (except for data in whatever
custom columns that potentially got dropped). Obviously, you should take
plenty of backups before attempting this as this is very much a ‘last resort’.

In conclusion

As mentioned, most users will never have to deal with any of this, as all the
related transactions are handled by the automated Mautic upgrade script, but if
you ever find yourself trying to troubleshoot a failed Mautic upgrade,

hopefully you now have a pretty good idea of what the
commands doctrine:migrations:migrate and
doctrine:schema:update actually do.

Additional reading

The Doctrine Project
The Doctrine Project - Migrations
Symfony - Databases and the Doctrine ORM
Symfony - DoctrineBundle
Symfony - DoctrineMigrationsBundle

Online URL:
https://kb.mautic.org/article/understanding-migrations-and-schema-update-
with-doctrine-in-mautic.html

Powered by TCPDF (www.tcpdf.org)

https://www.doctrine-project.org/
https://www.doctrine-project.org/projects/migrations.html
https://symfony.com/doc/current/doctrine.html
https://symfony.com/doc/current/bundles/DoctrineBundle/index.html
https://symfony.com/doc/master/bundles/DoctrineMigrationsBundle/index.html
https://kb.mautic.org/article/understanding-migrations-and-schema-update-with-doctrine-in-mautic.html
https://kb.mautic.org/article/understanding-migrations-and-schema-update-with-doctrine-in-mautic.html
http://www.tcpdf.org

